viernes, 14 de junio de 2013

Tema 3. La energía y el movimiento

 I La energía mecánica.


 La energía es una magnitud física que se muestra en múltiples manifestaciones. Definida como la capacidad de realizar trabajo y relacionada con el calor (transferencia de energía), se percibe fundamentalmente en forma de energía cinética, asociada al movimiento, y potencial, que depende sólo de la posición o el estado del sistema involucrado.

La energía mecánica es la parte de la física que estudia el equilibrio y el movimiento de los cuerpos sometidos a la acción de fuerzas.
Hace referencia a las energías cinética y potencial.











II Energía cinética.


El trabajo realizado por fuerzas que ejercen su acción sobre un cuerpo o sistema en movimiento se expresa como la variación de una cantidad llamada energía cinética, cuya fórmula viene dada por:

            Ec = ½ m . v2 





Concepto de Energía Cinética
La energía cinética es energía del movimiento. La energía cinética de un objeto, es la energía que posee como consecuencia de su movimiento. 

Energía Cinética
La energía cinética (siglas en inglés K.E.) es la energía del movimiento. La energía cinética de un objeto es la energía que posee a consecuencia de su movimiento. La energía cinética* de un punto material m está dada por
La energía cinética es una expresión del hecho de que un objeto en movimiento, puede realizar un trabajo sobre cualquier cosa que golpee; cuantifica la cantidad de trabajo que el objeto podría realizar como resultado de su movimiento. La energía mecánica total de un objeto es la suma de su energía cinética y su energía potencial.
Para un objeto de tamaño finito, esta energía cinética se llama la energía cinética de traslación de la masa, para distinguirlo de cualquier energía cinética rotacionalque puede poseer. La energía cinética total de una masa, se puede expresar como la suma de la energía cinética de traslación de su centro de masa, más la energía cinética de rotación alrededor de su centro de masa.
*Se supone que la velocidad es mucho menor que la velocidad de la luz. Si la velocidad es comparable a c, se debe usar la expresión de la energía cinética relativista.






III Energía potencial.






Se define como la energía determinada por la posición de los cuerpos. Esta energía depende de la altura y el peso del cuerpo según la ecuación: 
            E= m . g . h = P . h 
Con lo cual un cuerpo de masa situado a una altura (se da por hecho que se encuentra en un planeta por lo que existe aceleración gravitatoria) posee energía. Debido a que esta energía depende de la posición del cuerpo con respecto al centro del planeta se la llama energía potencial gravitatoria.

Tipos de energía potencial.
Elástica: la que posee un muelle estirado o comprimido.
Química: la que posee un combustible, capaz de liberar calor.
Eléctrica: la que posee un condensador cargado, capaz de encender una lámpara.
En algunas ocasiones un cuerpo puede tener ambas energías como por ejemplo la piedra que cae desde un edificio: tiene energía potencial porque tiene peso y está a una altura y al pasar los segundos la irá perdiendo (disminuye la altura) y posee energía cinética porque al caer lleva velocidad, que cada vez irá aumentando gracias a la aceleración de la gravedad.
Las energías cinética y potencial se transforman entre sí, su suma se denomina energía mecánica y en determinadas condiciones permanece constante.




IV Transformación de la energía.

La Energía se encuentra en constante transformación, pasando de unas formas a otras. La energía siempre pasa de formas más útiles a formas menos útiles. Por ejemplo, en un volcán la energía interna de las rocas fundidas puede transformarse en energía térmica produciendo gran cantidad de calor; las piedras lanzadas al aire y la lava en movimiento poseen energía mecánica; se produce la combustión de muchos materiales, liberando energía química; etc.




La Energía se encuentra en constante transformación, pasando de unas formas a otras. La energía siempre pasa de formas más útiles a formas menos útiles. Por ejemplo, en un volcán la energía interna de las rocas fundidas puede transformarse en energía térmica produciendo gran cantidad de calor; las piedras lanzadas al aire y la lava en movimiento poseen energía mecánica; se produce la combustión de muchos materiales, liberando energía química; etc. 
Por ejemplo, cuando la electricidad pasa por el alambre que forma la resistencia eléctrica de una estufa, produce calor y luz.
En el caso de una estufa a combustible –por ejemplo gas o kerosene que arden dentro del artefacto-, el resultado es el mismo, calor y luz, aunque aquí la fuente sea la energía química del combustible.
En el caso de un vehículo que se está moviendo, y de pronto choca contra algo y así se detiene, su energía cinética se ha transformado en el trabajo de deformar su carrocería y el objeto contra el cual se estrelló, fenómeno que además produce un calentamiento de ella y un fuerte ruido; he aquí que el sonido también es energía, aunque sea una parte ínfima de las energías puestas en juego en el choque.
Hidráulica a motriz: hidroeléctrica
Motriz a eléctrica: hidroeléctrica
Motriz a mecánica: motor
Eléctrica a motriz: motor
Eólica a mecánica: molino
Química a cinética: globo aerostático
Eléctrica a magnética: electroimán
Química a atómica: fisión nuclear
Química a motriz: caldera
Química a calórica: combustión del petróleo




PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 
El Principio de conservación de la energía indica que la energía no se crea ni se destruye; sólo se transforma de unas formas en otras. En estas transformaciones, la energía total permanece constante; es decir, la energía total es la misma antes y después de cada transformación.





No hay comentarios:

Publicar un comentario