miércoles, 19 de junio de 2013

Bloque II. Leyes del movimiento

I Primera Ley de movimiento de Newton.





Lo que establece la Primera ley de movimiento de Newton es lo siguiente:
En ausencia de fuerzas externas un objeto en reposo permanecerá en reposo y un objeto en movimiento continuará en movimiento a velocidad constante (esto es, con rapidez constante en línea recta).
Otra forma de establecer la misma premisa puede ser:
Todo objeto continuará en su estado de reposo o movimiento uniforme en línea recta a menos que sea obligado a cambiar ese estado debido a fuerzas que actúan sobre él.
Una explicación para esta ley es que establece que si la fuerza neta sobre un objeto es cero, si el objeto está en reposo, permanecerá en reposo y si está en movimiento permanecerá en movimiento en línea recta con velocidad constante.


La primera ley de Newton, conocida también como Ley de inercía, nos dice que si sobre un cuerpo no actua ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actua ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.







II Segunda ley o principio fundamental de la dinámica.

La Segunda Ley de Newton establece lo siguiente:





La aceleración de un objeto es directamente proporcional a la fuerza neta que actúa sobre él e inversamente proporcional a su masa.
De esta forma podemos relacionar la fuerza y la masa de un objeto con el siguiente enunciado:






Una buena explicación para misma es que establece que siempre que un cuerpo ejerce una fuerza sobre un segundo cuerpo, el segundo cuerpo ejerce una fuerza sobre el primero cuya magnitud es igual, pero en dirección contraria a la primera.  También podemos decir que la segunda ley de Newton responde la pregunta de lo que le sucede a un objeto que tiene una fuerza resultante diferente de cero actuando sobre el.








La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habiamos visto anteriormente.
Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt
es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimientosi la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

En física, un newton (pronunciada /niúton/) o neutonio o neutón (símbolo: N) es la unidad de fuerza en el Sistema Internacional de Unidades, nombrada así en reconocimiento a Isaac Newton por su aportación a la física, especialmente a la mecánica clásica.
El newton se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s2 a un objeto de 1 kg de masa.1 Es unaunidad derivada del SI que se compone de las unidades básicas:







III Tercera ley o principio de acción-reacción.


La tercera ley de Newton establece lo siguiente:





Siempre que un objeto ejerce una fuerza sobre un segundo objeto, el segundo objeto ejerce una fuerza de igual magnitud y dirección opuesta sobre el primero.  Con frecuencia se enuncia como "A cada acción siempre se opone una reacción igual".  En cualquier interacción hay un par de fuerzas de acción y reacción, cuya magnitud es igual y sus direcciones son opuestas. Las fuerzas se dan en pares, lo que significa que el par de fuerzas de acción y reacción forman una interacción entre dos objetos.



Otra forma de verlo es la siguiente:
Si dos objetos interactúan, la fuerza F12, ejercida por el objeto 1 sobre el objeto 2, es igual en magnitud y opuesta en dirección a la fuerza F21 ejercida por el objeto 2 sobre el objeto 1:
TERCERA LEY DEL MOVIMIENTO DE NEWTON: ACCIÓN Y REACCIÓN
Si te inclinas demasiado, te caerás. Pero si te inclinas extendiendo el brazo y tocas, puedes hacerlo sin caer. Cuando empujas contra el muro, el muro te empuja también a ti. Por eso es que te sostienes. Pregunta a tus amigos por qué no te caes. ¿ Cuántos de ellos te responderán : "porque la pared te empuja y te sostiene"? Quizá no muchas personas (a menos que le guste la física) se dan cuenta que una pared puede empujarnos tanto como nosotros a ella.



Toda fuerza que empuja la tierra hacia abajo es empujado
Al mismo tiempo hacia arriba
FUERZAS E INTERACCIONES
En el sentido más simple, una fuerza es un empujón o un tirón; sin embargo, observando con más detenimiento, Newton comprendió que una fuerza no es algo aislado sino parte de una acción mutua, es decir de una interacción entre una cosa y otra. Por ejemplo, considera la interacción entre un martillo y un clavo. Un martillo ejerce una fuerza sobre el clavo y lo introduce en la tabla. Pero esta fuerza es solo la mitad del cuento, porque debe existir además una fuerza que detenga el martillo. ¿Qué es lo que ejerce esta fuerza?,¡El clavo! Newton dedujo que cuando el martillo ejerce una fuerza en el clavo, el clavo ejerce una fuerza en el martillo. Así pues, en la interacción entre el martillo y el clavo hay un par de fuerzas : una que actúa sobre el clavo y otra que lo hace sobre el martillo. Observaciones de ésta índole llevaron a Newton a formular su tercera ley: la ley de la acción y la reacción.






La interacción que impulsa el clavo es la misma que detiene el martillo

TERCERA LEY DE NEWTON
La tercera ley de Newton establece que:
Siempre que un objeto ejerce una fuerza sobre otro objeto, el segundo objeto ejerce sobre el primero una fuerza igual y en sentido opuesto.
Una de las fuerzas se llama fuerza de acción y la otra, fuerza de reacción. No importa a cual de ellas llamemos acción y a cuál reacción. Lo importante es que ambas son partes de una sola interacción y que ninguna de las dos existe sin la otra. Las fuerzas tienen la misma intensidad y sentidos opuestos. La tercera ley de Newton se suele enunciar como: "a toda acción le corresponde una reacción de igual magnitud y en sentido contrario".


En toda interacción las fuerzas se dan por pares. Por ejemplo, tú interactúas con el piso cuando caminas sobre él. Empujas al piso y éste te empuja al mismo tiempo. De forma análoga, los neumáticos de un auto interactúan con el pavimento para producir el movimiento del vehículo. Los neumáticos empujan el pavimento y éste empuja simultáneamente los neumáticos. Cuando nadas interactúas con el agua. Tú empujas el agua hacia atrás y el agua te impulsa hacia adelante. En cada interacción participan dos fuerzas. Observa que en estos ejemplos las interacciones dependen de la fricción. Por ejemplo, es probable que una persona que intenta caminar sobre el hielo, donde la fricción es mínima, no consiga ejercer una fuerza de acción contra el hielo. Sin la fuerza de acción no puede haber una fuerza de reacción, y sin ésta no se produce un movimiento de avance.

No hay comentarios:

Publicar un comentario